
A Programming Model and Runtime System for
Approximation-Aware Heterogeneous Computing

Ioannis Parnassos, Nikolaos Bellas, Nikolaos Katsaros, Nikolaos Patsiatzis, Athanasios Gkaras,
Konstantinos Kanellis, Christos D. Antonopoulos, Michalis Spyrou and Manolis Maroudas

Electrical and Computer Engineering Department
University of Thessaly

Volos, Greece
Email: nbellas@inf.uth.gr

Abstract—Heterogeneous platforms that include diverse ar-
chitectures such as multicore CPUs, FPGAs and GPUs are
becoming very popular due to their superior performance and
energy efficiency. Besides heterogeneity, a promising approach
for minimizing energy consumption is through approximate
computing which relaxes the requirement that all parts of a
program are considered equally important to the output quality,
thus, all should be executed at full accuracy.

Our work extends a traditional OpenMP-like programming
model and runtime system to support seamless execution on
hybrid architectures with approximation semantics. Starting from
a common application code, annotated with our programming
model, the programmer can not only target heterogeneous ar-
chitectures comprising CPU, FPGA and GPU components, but
can also regulate the amount of approximation. We evaluate our
framework on a number of large-scale applications and demon-
strate that the combination of heterogeneous and approximate
computing can provide a powerful dynamic interplay between
performance and output quality.

I. INTRODUCTION

FPGA accelerators offer superior performance, power and
cost characteristics compared to a homogeneous CPU-based
platform, and are more energy efficient than GPU platforms.
However, heterogeneity poses the problem of how to efficiently
program a collection of those processing platforms without
requiring heroic efforts on the part of the programmer. Besides
heterogeneity, approximate computing has been proposed to
increase energy efficiency and improve performance [5]. This
is possible because, for some applications, not all computations
and not all data are equally critical, requiring to be performed
or maintained at 100% accuracy or correctness. For such
applications, it may be possible to only approximate the final
output (or part of it), rather than computing the exact results.

Data-parallel programming models such as OpenCL are
being used to port applications to CPUs and GPUs and also
as a High Level Synthesis (HLS) framework for FPGAs [6].
Still missing is a higher level programming abstraction that
allows the developer to focus on inter-component parallelism
in a heterogeneous environment, and an underlying software
framework that lifts the burden of task execution and data
movement between different address spaces. The contributions
of this paper are the following:

(i) We propose a task-based, OpenMP-like, programming
model which allows the programmer to simultaneously express

parallelism and approximation semantics on heterogeneous ar-
chitectures which include multicore CPUs, GPUs and FPGAs.

(ii) We design and implement a proof-of-concept runtime
system that provides support for the programming model.

(iii) We present a rigorous evaluation of our software
framework on a heterogeneous platform running realistic ap-
plication workloads. We analyze the trade-offs between perfor-
mance and accuracy for multiple possible platform configura-
tions and we show drastic performance improvements without
requiring considerable effort from the programmer.

The rest of the paper is structured as follows. Section II
describes the hardware platform. Section III introduces the
programming model and Section IV details the runtime system.
Section V presents the experimental evaluation of our software
framework. Finally, Section VI concludes the paper.

II. HETEROGENEOUS ARCHITECTURE

Our target platform comprises multicore CPUs, GPUs
and FPGA devices interconnected via PCIe buses. GPUs and
FPGA accelerators are used to execute OpenCL kernels. In
each case, we assume error-free processing units so that
approximation is due to algorithmic/software transformations
and not due to approximate hardware (unlike for example
in [3]).

We use RIFFA, an open-source framework, to provide an
abstraction for software developers to access the FPGA as a
PCIe-based accelerator [4]. The RIFFA hardware implements
the PCIe Endpoint protocol and from the accelerator side,
it provides a set of streaming channel interfaces that send
and receive data between the CPU main memory and the
customizable logic.

A System Manager unit in the FPGA is used a) to orches-
trate data movement between the RIFFA channels, accelerators
and memories, b) to schedule the operations in the FPGA
conforming to data dependences between kernels, and c) to
pull the profile data from the Profiler BRAM and send them
back to the CPU memory through the RIFFA TX channel. In
the current platform, the System Manager is implemented in
hardware as an FSM.

The FPGA includes additional hardware mechanisms for
cycle-accurate monitoring and profiling of events [7]. Events

that are monitored include accelerator and peripheral utiliza-
tion, bus transactions with producer-consumer granularity, and
data transfers through the RIFFA channels.

III. APPROXIMATION-CENTRIC PROGRAMMING MODEL

Our programming model adopts a task-based paradigm
using directives to annotate dependencies and approximations.
Tasks are implemented as OpenCL kernels, containing both the
accurate and the approximate version of the code, if available.
Listing 1 shows the #pragma acl1 directives used for task
processing (lines 1 to 6). The task body specifies the accurate
implementation of the task, defined as a function call, which
corresponds to an OpenCL kernel. The approxfun() clause
provides the approximate implementation of the task. This
is usually a simpler, faster and less accurate version of the
accurate kernel.

1 #pragma acl task [approxfun(function)]
2 [significant(expr)]
3 [in(varlist)] [out(varlist)] [inout(varlist)]
4 [workers(int_expr_list)] [groups(int_expr_list)]
5 [bind(device_type)] [label("name")]
6 accurate_task_impl(...) ;
7

8 #pragma acl taskgroup label("name")
9

10 #pragma acl taskwait [label("name")]

Listing 1: Task and taskgroup specifications

The significant() clause specifies the relative signif-
icance of the computation implemented by the task for the
quality of the output, with a value (or an expression) taking
the values 0 or 1. If set to 1 or omitted, the runtime will always
execute the task accurately. If set to 0, the runtime will always
execute the task approximately, or discard it if an approximate
version is not available. Future programming model extensions
will have significance values in the range [0.0, 1.0] to allow
the runtime system more leverage to decide, during execution,
which kernel version, precise or approximate, to execute.

The programmer must also specify the input and out-
put parameters of each task, using the in(), out() and
inout() clauses. This information implicitly specifies data
dependencies between tasks, and is exploited by the runtime
system to perform data flow analysis and data management as
explained in Section IV.

Since the tasks are implemented as OpenCL kernels, the
programmer specifies the geometry for kernel execution (num-
ber of work-items and work-groups) via the workers() and
groups() clauses, which follow the semantics of local and
global work size of OpenCL, respectively. OpenCL kernels
are able to run on every device on the heterogeneous system
but sometimes the implementation is optimized for a specific
device. For those reasons, the programmer can explicitly bind
a task for execution on a specific device using the bind()
clause. A possible usage would look like this: bind(ACL
FPGA), associating the OpenCL task to an FPGA.

The programmer can cluster multiple tasks in a task group
using the taskgroup directive and the label() clause
(line 8). Lastly, the taskwait directive specifies an explicit
synchronization point, acting as an execution and memory

1Approximate OpenCL

Fig. 1: Outline of the runtime system

barrier. By default, taskwait waits on all issued tasks
created so far, unless the label() clause is present, which
limits the explicit barrier only to tasks of the specific task
group.

We have implemented a source-to-source compiler to trans-
late the directives of the programming model to runtime system
API calls. The compiler is implemented as an LLVM/Clang
pass.

IV. RUNTIME SYSTEM

Figure 1 depicts the architecture of the runtime system
used to support the functionality offered by the programming
model. It is organized as a coordinator/worker work-sharing
scheduler. An important aspect of the runtime system, is
the automatic data flow analysis at the granularity of tasks.
The runtime system exploits the information provided by the
programmer via the in/out clauses and keeps track of the
memory ranges read and written by each task. This knowledge
is used for a) detecting data dependencies between tasks and b)
automating memory transfers among different address spaces
of the heterogeneous system.

For each device on the system, the runtime creates two
threads in the Host CPU: (a) a memory transfer thread,
responsible for transparent data transfers between the CPU
host and the device, and (b) a task issue thread, responsible
for issuing tasks (implementing the OpenCL kernels), for
execution to the corresponding device. A task has both the
accurate and approximate OpenCL kernels pre-compiled and
stored in a fat-binary, but we also support Just In Time (JIT)
compilation if necessary. For CPUs and GPUs, our runtime
reuses the underlying vendor OpenCL implementation for each
device for data transfers, code execution, as well as to identify
system configuration.

We use the Vivado toolset of Xilinx to transform the C code
to Verilog and generate the bitstream for the FPGA device. The
runtime system calls the RIFFA drivers to communicate data
between the device and the CPU memory and to trigger the
invocation of the hardware accelerator. We have also extended
the RIFFA API to be able to configure and access hardware
profiling and monitoring information as explained in Section II.

The runtime system also undertakes the responsibility for
moving memory objects across address spaces and retaining
data coherence across the system. When the execution thread
selects a task for execution on a device, the thread responsible
for memory management checks the availability of the task
input data in the memory of that device and makes the
necessary arrangements so that the input data are present in
the memory of the device before task execution.

V. EXPERIMENTAL EVALUATION

A. Methodology and Benchmarks

We evaluated our framework in a platform comprising
(i) an Intel i7-4820K, eight-core CPU running at 3.70 GHz
with 32 GB main memory, (ii) an Nvidia GeForce GTX-
770 GPU with 1536 streaming processors (SPs) running at
1.1 GHz, and (iii) a VC707 board with a Virtex-7 FPGA
and 1 GB external DRAM. The GPU and the FPGA boards
are connected to the CPU via a PCIe 2.0 bus. All codes
for each platform, both accurate and approximate versions
wherever available, are precompiled and stored in fat-binary
files. Application binaries and bitstreams have been created
with the Intel OpenCL SDK 2016 and Nvidia clcc compilers
for the x86 and GPU, respectively, and with the Vivado and
Vivado HLS 2016.2 toolset for the FPGA. The FPGA target
frequency is 250 MHz in all cases.

TABLE I: Benchmark suite

Benchmark Domain Input Set Error Metric
Histogram of
Oriented
Gradients (HOG)

Computer
Vision

30 images from
INRIA dataset

Perc. of
undetected
pedestrians

Molecular
Dynamics (MD)

Physics
Simulation

Bounding Box side =
300 Å, dt=0.02secs,
dur=1sec, 32768
particles

Energy
Relative Error

JPEG Video/Image
compression One 4096x4096 image 100/PSNR

Fisheye Multimedia One 2059x1944
fisheye image 100/PSNR

The Histogram of Oriented Gradients (HOG) [2] is a
computer vision application for object detection. HOG receives
an image as input and returns the locations of detected human
pedestrians. The input image is processed iteratively in differ-
ent scales to capture the different sizes of pedestrians appearing
in the scene.

We use two independent approximate techniques in HOG,
targeting computations with a noticeable effect on perfor-
mance. First, we periodically eliminate some of the scaled
images during the iterative processing. In our experiments, we
drop one scaled image every five (processing 25 out of 31
scalings per image) or every ten scaled images (processing
28 out of 31 scalings per image). The second technique is
to reduce the accuracy of the histogram which is the most
computationally expensive kernel of HOG.

Molecular Dynamics (MD) is an N-body method widely
used to simulate particle systems in a wide range of scales
from solids and liquids to the motion of stars and galaxies.
We approximate the simulation by setting a cut-off distance
so that interactions are computed only among particles within
the region.

The JPEG benchmark consists of three kernels which are
applied on 8x8 pixel blocks: (i) the Discrete Cosine Transform
(DCT) transforms 2D pixel images to spatial frequency coef-
ficients, (ii) the Quantization / inverse Quantization (Q / iQ)
compress the range of coefficient values to a narrower range of
values and uncompress it back (lossy compression), and (iii)
the inverse DCT (iDCT) reconstructs a lossy version of the
initial image using the output of the Q / iQ kernel.

The computation of low frequency coefficients (located at
the 2x4 upper left part of an 8x8 block) is more important
than the computation of the remaining coefficients. The ap-
proximate version of DCT only computes those and sets the
remaining 56 coefficients to zero. The approximate iDCT only
uses the non-zero coefficients to reconstruct the block of pixels.

Finally, Fisheye lens distortion correction is an image
processing application which transforms distorted wide an-
gle (fisheye) images back to the natural-looking perspective
space [1]. The most computationally demanding phase, bicubic
interpolation, is used to approximate intermediate points of a
continuous event given the interpolation nodes, or, in this case,
pixel points. The method requires the use of the 16 pixel values
of a 4x4 window around the interpolated point.

The approximate version of Fisheye relaxes the require-
ment of bicubic interpolation to use a 4x4 window of pixels,
and, instead, it uses only the neighboring 2x2 window.

B. Evaluation

Figure 2 shows the experimental results for a range of
runtime decisions for task executions and quality levels. For
HOG, we started with the fastHOG CUDA implementation [8]
which is optimized for GPU execution, and we converted
all kernels to OpenCL. In the CPU execution, the histogram
kernel accounts for 45% of execution time and is a prime
target for GPU and FPGA acceleration. We benchmarked five
configurations as follows: (i) CPU-only execution, (ii) GPU-
only execution, (iii) GPU running the histogram kernel (H),
(iv) FPGA running the histogram kernel, and, finally, (v)
FPGA running the histogram kernel and GPU running the
SVM kernel. In the last three cases, the Host CPU executes
the remaining code. Performance analysis shows that mapping
all kernels to the GPU consistently outperforms any other
configuration.

HOG is rather sensitive to fluctuations in approximation,
a testament of the lack of algorithmic redundancies of this
application. Even a 10% reduction of the number of scalings
(i.e. processing 28 out of 31 scales per image) results into
a 70% pedestrian detection, down from the 84% detection
when the code executes accurately. On the other hand, skipping
histogram interpolation across neighboring bins is mainly
harmful to accuracy when combined with scaling reduction.

MD performs better when the single OpenCL kernel is
mapped on the GPU or the FPGA. Approximate execution
significantly improves performance for CPU and somewhat
for GPU and FPGA execution, without noticeable quality
degradation (0.2% relative error), which is typical of most N-
body applications. thereby to its energy.

JPEG performance profits from approximation by 1.75,
1.23 and 6.63 times when executing on the CPU, GPU and

H
O

G

M
D

JP
E

G

Fi
sh

ey
e

Fig. 2: Experimental results for the benchmarks of Section V-A. Execution time is shown in bars (left vertical axis), and error
due to approximation is shown in black dots (right vertical axis) for a range of architectural configurations and degrees of
approximation (horizontal axis). Execution time includes both processing (blue bars) and transfer time between the Host CPU
and the device (orange bars). Approximation error is independent of the specific architectural configuration. For JPEG and Fisheye
we use the error metric 100/PSNR (instead of simply PSNR) to abide by the concept that in this figure lower is better.

FPGA, respectively with a negligible drop of image quality
(PSNR dropping from 37.6dB to 37.2dB). DCT and iDCT
kernels have well-defined significance semantics due to the
insensitivity of the human eye to high visual frequencies
thereby exhibiting a well-behaved performance vs. accuracy
curve.

Fisheye shows a steep drop in output quality when we relax
the requirement for bicubic interpolation (PSNR dropping from
81dB to 49dB). FPGA execution fares poorly mainly because
the memory access pattern for each 4x4 window of pixels is
irregular and cannot be bursted out of the external DRAM.

VI. CONCLUSION

We introduce a programming model and runtime system
to support approximate computing on heterogeneous systems.
We allow the user to express expertise on the importance of
different computations for the quality of the end result, to
provide performance-efficient approximate implementations of
computations and to control the quality / energy efficiency
trade-off at execution time. Also, our runtime eliminates tech-
nical concerns when programming a heterogeneous system,
such as computation scheduling and data management, which
are often a huge programming burden that limit productivity.
We evaluated our implementation with realistic applications
and found that exploiting the concept of significance at the ap-
plication level enables measurable performance gains through
a combination of approximations and heterogeneity, while the
programmer maintains control of the quality of the output.

REFERENCES

[1] N. Bellas, S. M. Chai, M. Dwyer, and D. Linzmeier. Real-time
fisheye lens distortion correction using automatically generated streaming
accelerators. In 17th IEEE Symposium on Field Programmable Custom
Computing Machines, FCCM ’09, pages 149 – 156, April 2009.

[2] N. Dalal and B. Triggs. Histograms of Oriented Gradients for Human
Detection. In IEEE Conference on Computer Vision and Pattern
Recognition, CVPR ’05, pages 886–893, June 2005.

[3] H. Esmaeilzadeh, A. Sampson, L. Ceze, and D. Burger. Architecture
Support for Disciplined Approximate Programming. In 17th Interna-
tional Conference on Architectural Support for Programming Languages
and Operating Systems, ASPLOS ’12, pages 301–312, March 2012.

[4] M. Jacobsen and R. Kastner. RIFFA 2.0: A reusable integration
framework for FPGA accelerators. In 23rd International Conference
on Field programmable Logic and Applications, FPL ’13, pages 1–8,
September 2013.

[5] S. Mittal. A Survey of Techniques for Approximate Computing. ACM
Comput. Surv., 48(4):62:1–62:33, Mar. 2016.

[6] M. Owaida, N. Bellas, C. D. Antonopoulos, K. Daloukas, and C. An-
toniadis. Massively parallel programming models used as hardware de-
scription languages: The OpenCL case. In 2011 IEEE/ACM International
Conference on Computer-Aided Design, ICCAD 2011, San Jose, CA,
November 7-10, pages 326–333.

[7] I. Parnassos, P. Skrimponis, G. Zindros, and N. Bellas. SoCLog:
A real-time, automatically generated logging and profiling mechanism
for FPGA-based Systems On Chip. In 26th International Conference
on Field Programmable Logic and Applications, FPL 2016, Lausanne,
Switzerland, August 29 - September 2, 2016, pages 1–4.

[8] V. Prisacariu and I. Reid. fastHOG - a real-time GPU implementation of
HOG. Technical Report 2310/09, Department of Engineering Science,
Oxford University, 2009.

